Clinical Phytoscience (Dec 2019)

Anti-proliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L

  • Emeka E. Okoro,
  • Omolaja R. Osoniyi,
  • Almas Jabeen,
  • Sidrah Shams,
  • M. I. Choudhary,
  • Funmilayo D. Onajobi

DOI
https://doi.org/10.1186/s40816-019-0143-x
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Abrus precatorius possesses various therapeutic properties including anticancer potentials. This study evaluated the anti-proliferative activities of fractions of methanol root extract of A. precatorius on breast and cervical cancer cells and their immunomodulatory effect. Phytochemical screening was done by FTIR and GCMS. In vitro anti-proliferative effect was evaluated on human breast cancer (AU565) and cervical cancer (HeLa) cells and on murine fibroblast (NIH 3 T3) cells. Antioxidant activity was performed via DPPH radical scavenging assay. The immunomodulatory potential of fractions was evaluated by inhibition of phagocytes oxidative burst (ROS), Nitric oxide (NO) and proinflammatory cytokine TNF-α. Results A. precatorius fractions showed different chemical groups and were somewhat selective in antiproliferative activity against studied cancer cells. Ethyl acetate fraction showed the most significant antiproliferative activity with IC50 values of 18.10 μg/mL and 11.89 μg/mL against AU565 and HeLa cells respectively. Hexane fraction significantly (p < 0.05) inhibited HeLa cells (IC50 18.24 ± 0.16 μg/mL), whereas aqueous fraction showed mild inhibition (IC50 46.46 ± 0.14 μg/mL) on AU565 cell proliferation. All fractions showed no cytotoxicity against NIH-3 T3 murine fibroblast normal cells. All fractions showed potent and significant (p < 0.001) DPPH radical scavenging activity as well as suppressed phagocytic oxidative burst. Hexane (< 1 μg/mL), ethyl acetate (< 1 μg/mL), and butanol (5.74 μg/mL) fractions potently inhibited the cytokine TNF- α, hexane (< 1 μg/mL) and ethyl acetate (< 1 μg/mL) fractions also potently inhibited NO. Conclusions The antiproliferative activities and suppressive effect on the phagocytic oxidative burst, NO and proinflammatory cytokine might be due to the synergistic actions of bioactive compounds especially flavonoids present in the assayed fractions and therefore, suggest chemotherapeutic use of A. precatorius in cancer treatment.

Keywords