Sensors (Apr 2025)

A Discrete Fourier Transform-Based Signal Processing Method for an Eddy Current Detection Sensor

  • Songhua Huang,
  • Maocheng Hong,
  • Ge Lin,
  • Bo Tang,
  • Shaobin Shen

DOI
https://doi.org/10.3390/s25092686
Journal volume & issue
Vol. 25, no. 9
p. 2686

Abstract

Read online

This paper presents a discrete Fourier transform (DFT)-based signal processing framework for eddy current non-destructive testing (NDT), aiming to enhance signal quality for precise defect characterization in critical nuclear components. By enforcing strict periodicity matching between sampling points and signal frequencies, the proposed approach mitigates DFT spectrum leakage, validated via phase linearity analysis with errors of ≤0.07° across the 20 Hz–1 MHz frequency range. A high-resolution 24-bit analog-to-digital converter (ADC) hardware architecture eliminates complex analog balancing circuits, reducing system-wide noise by overcoming the limitations of traditional 16-bit ADCs. A 6 × 6 mm application-specific integrated circuit (ASIC) for array sensors enables three-dimensional (3D) defect visualization, complemented by Gaussian filtering to suppress vibration-induced noise. Our experimental results demonstrate that the digital method yields smoother signal waveforms and superior 3D defect imaging for nuclear power plant tubes, enhancing result interpretability. Field tests confirm stable performance, showcasing clear 3D defect distributions and improved inspection performance compared to conventional techniques. By integrating DFT signal processing, hardware optimization, and array sensing, this study introduces a robust framework for precise defect localization and characterization in nuclear components, addressing key challenges in eddy current NDT through systematic signal integrity enhancement and hardware innovation.

Keywords