Remote Sensing (Apr 2020)
Tracing Leaf Photosynthetic Parameters Using Hyperspectral Indices in an Alpine Deciduous Forest
Abstract
Leaf photosynthetic parameters are important in understanding the role of photosynthesis in the carbon cycle. Conventional approaches to obtain information on the parameters usually involve long-term field work, even for one leaf sample, and are, thus, only applicable to a small area. The utilization of hyperspectral remote sensing especially of various vegetation indices is a promising approach that has been attracting increasing attention recently. However, most hyperspectral indices are only applicable to a specific area and specific forest stands, depending heavily on the conditions from which the indices are developed. In this study, we tried to develop new hyperspectral indices for tracing the two critical photosynthetic parameters (the maximum rate of carboxylation, Vcmax and the maximum rate of electron transport, Jmax) that are at least generally applicable for alpine deciduous forests, based on original hyperspectral reflectance, first-order derivatives, and apparent absorption spectra. In total, ten types of hyperspectral indices were screened to identify the best indices, and their robustness was determined using the ratio of performance to deviation (RPD) and Akaike’s Information Criterion corrected (AICc). The result revealed that the double differences (DDn) type of indices using the short-wave infrared (SWIR) region based on the first-order derivatives spectra performed best among all indices. The specific DDn type of indices obtained the RPD values of 1.43 (R2 = 0.51) for Vcmax and 1.68 (R2 = 0.64) for Jmax, respectively. These indices have also been tested using the downscaled dataset to examine the possibilities of using hyperspectral data derived from satellite-based information. These findings highlight the possibilities of tracing photosynthetic capacity using hyperspectral indices.
Keywords