Sensors (Jan 2023)

The Dependence of the Burning Process and Ignition Temperature of a Lithium Cell on Its State of Charge

  • Andrzej Erd,
  • Tomasz Ciszewski

DOI
https://doi.org/10.3390/s23020753
Journal volume & issue
Vol. 23, no. 2
p. 753

Abstract

Read online

Batteries and energy stores built with lithium-ion cells are potentially dangerous and can cause fires that are difficult to extinguish. Reducing the intensity of the fires and extending the time of their development may be of great importance for improving safety. The aim of this work is to examine the influence of the state of charge (SOC) of a cell on susceptibility to ignition, and to analyze the course of the burning process. For this purpose, a special measuring station was built, where ignition was initiated and the course of combustion was observed. During the measurements, energy was supplied by heating a cell from the outside with a resistance heater while at the same time thermally insulating the cell from the environment. The measures of the course of the fire were the amount of energy supplied to the cell before ignition and the temperature changes during the fire. The tests proved the existence of significant differences in the amount of energy causing the ignition of cells. These differences result from changes in the SOC. Quantitative results are presented. The existence of differences in susceptibility to ignition can be used to change the construction of control algorithms for battery management systems (BMSs).

Keywords