NeuroImage: Clinical (Jan 2024)

Region-specific MRI predictors of surgical outcome in temporal lobe epilepsy

  • Fatemeh Fadaie,
  • Benoit Caldairou,
  • Ravnoor S. Gill,
  • Niels A. Foit,
  • Jeffery A. Hall,
  • Boris C. Bernhardt,
  • Neda Bernasconi,
  • Andrea Bernasconi

Journal volume & issue
Vol. 43
p. 103658

Abstract

Read online

Objective: In drug-resistant temporal lobe epilepsy (TLE), it is not well-established in how far surgery should target morphological anomalies to achieve seizure freedom. Here, we assessed interactions between structural brain compromise and surgery to identify region-specific predictors of seizure outcome. Methods: We obtained pre- and post-operative 3D T1-weighted MRI in 55 TLE patients who underwent selective amygdalo-hippocampectomy (SAH) or anterior temporal lobectomy (ATL) and 40 age and sex-matched healthy subjects. We measured surface-based morphological alterations of the mesiotemporal lobe structures (hippocampus, amygdala, entorhinal and piriform cortices), the neocortex and the thalamus on both pre- and post-operative MRI. Using precise co-registration, in each patient we mapped the surgical cavity onto the MRI acquired before surgery, thereby quantifying the amount of pathological tissue resected; these features, together with the preoperative morphometric data, served as input to a supervised classification algorithm for postsurgical outcome prediction. Results: On pre-operative MRI, patients who became seizure-free (TLE-SF) presented with severe ipsilateral amygdalar and hippocampal atrophy, while not seizure-free patients (TLE-NSF) displayed amygdalar hypertrophy. Stratifying patients based on the surgical approach, post-operative MRI showed similar patterns of mesiotemporal and thalamic changes, but divergent neocortical thinning affecting the parieto-temporo-occipital regions following ATL and the frontal lobes after SAH. Irrespective of the surgical approach, hippocampal atrophy on pre-operative MRI and its extent of resection were the most predictive features of seizure-freedom in 89% of patients (selected 100% across validations). Significance: Our study indicates a critical role of the extent of resection of MRI-derived hippocampal morphological anomalies on seizure outcome. Precise pre-operative quantification of the mesiotemporal lobe provides non-invasive prognostics for individualized surgery.