Applied Sciences (Jan 2025)

Physics-Informed Neural Networks for Modal Wave Field Predictions in 3D Room Acoustics

  • Stefan Schoder

DOI
https://doi.org/10.3390/app15020939
Journal volume & issue
Vol. 15, no. 2
p. 939

Abstract

Read online

The generalization of Physics-Informed Neural Networks (PINNs) used to solve the inhomogeneous Helmholtz equation in a simplified three-dimensional room is investigated. PINNs are appealing since they can efficiently integrate a partial differential equation and experimental data by minimizing a loss function. However, a previous study experienced limitations in acoustics regarding the source term. A challenging but realistic excitation case is a confined (e.g., single-point) excitation area, yielding a smooth spatial wave field periodically with the wavelength. Compared to studies using smooth (unrealistic) sound excitation, the network’s generalization capabilities regarding a realistic sound excitation are addressed. Different methods like hyperparameter optimization, adaptive refinement, Fourier feature engineering, and locally adaptive activation functions with slope recovery are tested to tailor the PINN’s accuracy to an experimentally validated finite element analysis reference solution computed with openCFS. The hyperparameter study and optimization are conducted regarding the network depth and width, the learning rate, the used activation functions, and the deep learning backends (PyTorch 2.5.1, TensorFlow 2.18.0 1, TensorFlow 2.18.0 2, JAX 0.4.39). A modified (feature-engineered) PINN architecture was designed using input feature engineering to include the dispersion relation of the wave in the neural network. For smoothly (unrealistic) distributed sources, it was shown that the standard PINNs and the feature-engineered PINN converge to the analytic solution, with a relative error of 0.28% and 2×10−4%, respectively. The locally adaptive activation functions with the slope lead to a relative error of 0.086% with a source sharpness of s=1 m. Similar relative errors were obtained for the case s=0.2 m using adaptive refinement. The feature-engineered PINN significantly outperformed the results of previous studies regarding accuracy. Furthermore, the trainable parameters were reduced to a fraction by Bayesian hyperparameter optimization (around 5%), and likewise, the training time (around 3%) was reduced compared to the standard PINN formulation. By narrowing this excitation towards a single point, the convergence rate and minimum errors obtained of all presented network architectures increased. The feature-engineered architecture yielded a one order of magnitude lower accuracy of 0.20% compared to 0.019% of the standard PINN formulation with a source sharpness of s=1 m. It outperformed the finite element analysis and the standard PINN in terms time needed to obtain the solution, needing 15 min and 30 s on an AMD Ryzen 7 Pro 8840HS CPU (AMD, Santa Clara, CA, USA) for the FEM, compared to about 20 min (standard PINN) and just under a minute of the feature-engineered PINN, both trained on a Tesla T4 GPU (NVIDIA, Santa Clara, CA, USA).

Keywords