Frontiers in Nutrition (Jul 2022)

Effect of ultrasonic degradation on the physicochemical property and bioactivity of polysaccharide produced by Chaetomium globosum CGMCC 6882

  • Shiwei Li,
  • Shiwei Li,
  • Yingna Wang,
  • Weipeng Dun,
  • Wanqing Han,
  • Chunping Xu,
  • Qi Sun,
  • Zichao Wang

DOI
https://doi.org/10.3389/fnut.2022.941524
Journal volume & issue
Vol. 9

Abstract

Read online

Similar to the enzymatic process, there might also be an active fragment in polysaccharides, how to obtain is important for investigating the bioactivity and pharmacological mechanism of polysaccharides. Presently, a Gynostemma pentaphyllum endophytic fungus Chaetomium globosum CGMCC 6882 polysaccharide [Genistein Combined Polysaccharide (GCP)] was degraded by ultrasonic treatment, two polysaccharide fragments of GCP-F1 and GCP-F2 were obtained. Physicochemical results showed that GCP-F1 and GCP-F2 had the same monosaccharide composition of arabinose, galactose, glucose, xylose, mannose, and glucuronic acid as compared to GCP with slightly different molar ratios. However, weight-average molecular weights of GCP-F1 and GCP-F2 decreased from 8.093 × 104 Da (GCP) to 3.158 × 104 Da and 1.027 × 104 Da, respectively. In vitro scavenging assays illustrated that GCP-F1 and GCP-F2 had higher antioxidant activity against 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anions, and hydroxyl radical than GCP, the order was GCP < GCP-F1 < GCP-F2. Meanwhile, antibacterial tests showed that ultrasonic degradation increased the antibacterial activity of GCP-F1 as compared to GCP, but GCP-F2 almost lost its antibacterial activity with further ultrasound treatment. Changes in the antioxidant and antibacterial activities of GCP-F1 and GCP-F2 might be related to the variation of their molecular weights.

Keywords