Leibniz Transactions on Embedded Systems (Jul 2017)
Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems
Abstract
This paper investigates preemptive spin-based global resource sharing protocols for resource-constrained real-time embedded multi-core systems based on partitioned fixed-priority preemptive scheduling. We present preemptive spin-based protocols that feature (i) an increased schedulability ratio of task sets and reduced response jitter of tasks compared to the classical non-preemptive spin-based protocol, (ii) similar memory requirements for the administration of waiting tasks as for the non-preemptive protocol whilst only causing (iii) a minimal increase of the minimal number of required stacks per core from one to at most two, and (iv) strong progress guarantees to tasks. We complement these protocols with a unified worst-case response time analysis that specializes to the classical analysis for the non-preemptive protocol. The paper includes a comparative evaluation of the preemptive protocols and the non-preemptive protocol based on synthetic data.
Keywords