Physical Review Research (Jul 2020)
Topologically ordered zigzag nanoribbon: e/2 fractional edge charge, spin-charge separation, and ground-state degeneracy
Abstract
We numerically compute the density of states (DOS) of interacting disordered zigzag graphene nanoribbon (ZGNR) having midgap states showing e/2 fractional edge charges. The computed Hartree-Fock DOS is linear at the critical disorder strength where the gap vanishes. This implies an I-V curve of I∝V^{2}. Thus, I-V curve measurement may yield evidence of fractional charges in interacting disordered ZGNR. We show that even a weak disorder potential acts as a singular perturbation on zigzag edge electronic states, producing drastic changes in the energy spectrum. Spin-charge separation and fractional charges play a key role in the reconstruction of edge antiferromagnetism. Our results show that an interacting disordered ZGNR is a topologically ordered Mott-Anderson insulator.