Scientific Reports (Jan 2023)

Arbuscular mycorrhizal fungi in oat-pea intercropping

  • Alan Lee,
  • Patrick Neuberger,
  • Akim Omokanye,
  • Guillermo Hernandez-Ramirez,
  • Keunbae Kim,
  • Monika A. Gorzelak

DOI
https://doi.org/10.1038/s41598-022-22743-7
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Arbuscular mycorrhizal fungal diversity can be altered by intercropping plant species, as well as N fertilizer applications. This study examined the effects of oat-pea intercropping and N fertilizer addition on the richness and diversity of mycorrhizal species, as well as identified the most common arbuscular mycorrhizal fungi (AMF) genera recruited for oats and peas in two growing seasons (2019 and 2020). The AMF diversity was higher in an intercropped system compared to their respective monocropping system. Under drier conditions in 2019, arbuscular mycorrhizal richness decreased with N fertilizer addition in sole peas and increased with N fertilizer addition in sole oats, but no significant change in richness was observed in oat-pea intercropping. During the wetter growing season 2020, arbuscular mycorrhizal diversity increased when oat and pea were intercropped, compared to either sole oat or sole pea. Diversispora in sole pea was a significant indicator differentiating the root associated AMF community from sole oat. Claroideoglomus richness increased in peas in 2020, thus this genus could be moisture dependent. Paraglomus richness in oat-pea intercropping was similar to sole oat in 2019, and similar to sole pea in 2020. This can suggest that Paraglomus is an indicator of plant stress under intercropping, as based on the premise that stressed plants release more exudates, and the subsequent mycorrhizal associations favor these plants with higher exudation. Future investigations can further reveal the functions and benefits of these mycorrhizal genera in annual monocrop and intercropping systems.