Molecules (Nov 2022)
Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking
Abstract
Viniferifuran was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid. An enzyme kinetics analysis showed that viniferifuran possessed a strong inhibition on XO in a typical anti-competitive manner with an IC50 value of 12.32 μM (IC50 for the first-line clinical drug allopurinol: 29.72 μM). FT-IR and CD data analyses showed that viniferifuran could induce a conformational change of XO with a decrease in the α-helix and increases in the β-sheet, β-turn, and random coil structures. A molecular docking analysis revealed that viniferifuran bound to the amino acid residues located within the activity cavity of XO by a strong hydrophobic interaction (for Ser1214, Val1011, Phe914, Phe1009, Leu1014, and Phe649) and hydrogen bonding (for Asn768, Ser876, and Tyr735). These findings suggested that viniferifuran might be a promising XO inhibitor with a favorable mechanism of action.
Keywords