BMC Research Notes (Jul 2017)

Examination of the gait pattern based on adjusting and resulting components of the stride-to-stride variability: proof of concept

  • U. Laessoe,
  • N. M. B. Jensen,
  • P. Madeleine

DOI
https://doi.org/10.1186/s13104-017-2623-8
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Stride-to-stride variability may be used as an indicator in the assessment of gait performance, but the evaluation of this parameter is not trivial. In the gait pattern, a deviation in one stride must be corrected within the next strides (elemental variables) to ensure a steady gait (performance variable). The variance in these elemental and performance variables may therefore be evaluated as adjusting and resulting components of variability. We explored this approach to gait evaluation by matching the velocity of one stride to a subsequent stride with four different time lags ranging from 0.5 to 2 strides with 0.5 stride increments. The time lag values corresponded to the following contralateral stride, the following ipsilateral stride, the second following contralateral stride and the second following ipsilateral stride. Methods Twenty asymptomatic young adults walked on an instrumented treadmill at their preferred gait speed. The stride velocity was calculated, and variances in the stride-to-stride differences and in the stride-to-stride sums represented the adjusting and the resulting variances, respectively. A ratio between these values of greater than one indicated a meaningful stride-to-stride interaction. Results For the four time lags (0.5, 1, 1.5, and 2 strides), the adjusting/resulting variance ratios (mean and CI 95%) were 1.0 (0.8–1.2), 2.9 (2.3–3.6), 1.2 (1.0–1.4) and 1.2 (0.9–1.4), respectively. Conclusions This new approach to the evaluation of stride-to-stride variability suggests that gait velocity adjustments occurred within one full stride cycle during treadmill walking among asymptomatic young adults. The validity of the approach needs to be tested in over-ground walking.

Keywords