Applied Sciences (Oct 2023)
Drilling Parameters Multi-Objective Optimization Method Based on PSO-Bi-LSTM
Abstract
The increasing exploration and development of complex oil and gas fields pose challenges to drilling efficiency and safety due to the presence of formations with varying hardness, abrasiveness, and rigidity. Consequently, there is a growing demand for drilling parameter optimization and speed-up technologies. However, existing models based on expert experience can only achieve single-objective optimization with limited accuracy, making real-time adaptation to changing drilling conditions and formation environments challenging. The emergence of artificial intelligence provides a new approach for optimizing drilling parameters. In this study, we introduce the Bi-directional Long Short-Term Memory (Bi-LSTM) deep learning algorithm with the attention mechanism to predict the rate of penetration (ROP). This algorithm improves the ROP prediction accuracy to 98.33%, ensuring reliable subsequent optimization results. Additionally, we propose a coupling optimization algorithm that combines Bi-LSTM with the particle swarm optimization algorithm (PSO) to enhance drilling efficiency through parameter optimization. Our approach aims to maximize drilling footage while maintaining the highest ROP. The optimal solutions obtained are verified through multi-parameter cloud image analysis, yielding consistent results. The application of our approach demonstrates an 81% increase in drilling speed and a 28% reduction in drill bit energy losses. Moreover, the real-time optimization results effectively guide field operations.
Keywords