Agronomy (Mar 2024)

Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets

  • Yuxin Chang,
  • Bowen Zhang,
  • Guolong Li,
  • Peng Zhang,
  • Huiyu Liu,
  • Shaoying Zhang

DOI
https://doi.org/10.3390/agronomy14030539
Journal volume & issue
Vol. 14, no. 3
p. 539

Abstract

Read online

Northern China faces water scarcity, restricting water usage in place across Inner Mongolia’s western region. The integrated irrigation and fertilization model for sugar beet is undergoing rapid development and application in production. However, there is a concerning trend in production where the frequency of irrigation and fertilization is being increased blindly, resulting in the wastage of valuable water and fertilizer resources. Limiting water and fertilizer usage is an effective approach to improve sugar beet production efficiency. Sugar beets are a significant sugar crop in China. A split-plot design was employed to examine the impact of reducing water and fertilizer use on sucrose metabolism in sugar beet root. Our study was performed at the Ulanqab Institute of Agricultural and Forestry Sciences in Inner Mongolia from 2022 to 2023. Three levels of fertilization and irrigation were utilized. We investigated the interactions between irrigation and fertilization on sucrose accumulation in sugar beet root. We examined key enzyme activities involved in sucrose metabolism alongside their gene expression levels. The findings suggested that reducing irrigation by 15%, fertilization by 10%, or both irrigation by 15% and fertilization by 10%, increased sucrose concentrations of sugar beets compared to the control group administered conventional water and fertilizer. Over the two-year period, the average sucrose concentration increased by 0.45, 0.57, and 0.65 degrees, respectively, under each treatment. Subsequent research verified that appropriately reducing water and fertilizer can regulate the expression of enzyme genes, thus influencing enzyme activity. Moreover, due to the higher efficiency of enzyme synthesis compared to decomposition, it contributed to an increase in net enzyme activity. These findings suggest that an appropriate reduction of water and fertilizer can improve sucrose synthesis rates and increase the sucrose concentration in sugar beets, providing a theoretical basis for environmentally friendly generation and enhanced efficiency in sugar beet growth.

Keywords