JPhys Materials (Jan 2024)
2024 roadmap on 2D topological insulators
- Bent Weber,
- Michael S Fuhrer,
- Xian-Lei Sheng,
- Shengyuan A Yang,
- Ronny Thomale,
- Saquib Shamim,
- Laurens W Molenkamp,
- David Cobden,
- Dmytro Pesin,
- Harold J W Zandvliet,
- Pantelis Bampoulis,
- Ralph Claessen,
- Fabian R Menges,
- Johannes Gooth,
- Claudia Felser,
- Chandra Shekhar,
- Anton Tadich,
- Mengting Zhao,
- Mark T Edmonds,
- Junxiang Jia,
- Maciej Bieniek,
- Jukka I Väyrynen,
- Dimitrie Culcer,
- Bhaskaran Muralidharan,
- Muhammad Nadeem
Affiliations
- Bent Weber
- ORCiD
- School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
- Michael S Fuhrer
- School of Physics and Astronomy, Monash University , Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University , Clayton, Victoria 3800, Australia
- Xian-Lei Sheng
- School of Physics, Beihang University , Beijing, People’s Republic of China
- Shengyuan A Yang
- Research Laboratory for Quantum Materials, IAPME, University of Macau , Macau, People’s Republic of China
- Ronny Thomale
- ORCiD
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg , 97074 Würzburg, Germany; Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg & Technische Universität Dresden , Dresden, Germany
- Saquib Shamim
- ORCiD
- Experimentelle Physik III, Physikalisches Institut, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany; Institute for Topological Insulators, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany; Department of Condensed Matter and Material Physics, S.N. Bose National Centre for Basic Sciences , Kolkata 700106, India
- Laurens W Molenkamp
- Experimentelle Physik III, Physikalisches Institut, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany; Institute for Topological Insulators, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany; Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg & Technische Universität Dresden , Dresden, Germany
- David Cobden
- Department of Physics, University of Washington , Seattle, WA, United States of America
- Dmytro Pesin
- Department of Physics, University of Virginia , Charlottesville, VA, United States of America
- Harold J W Zandvliet
- ORCiD
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500AE Enschede, The Netherlands
- Pantelis Bampoulis
- ORCiD
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500AE Enschede, The Netherlands
- Ralph Claessen
- ORCiD
- Physikalisches Institut, Universität Würzburg , 97074 Würzburg, Würzburg Germany; Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg & Technische Universität Dresden , Dresden, Germany
- Fabian R Menges
- Max Planck Institute for Chemical Physics of Solids , 01187 Dresden, Germany
- Johannes Gooth
- Max Planck Institute for Chemical Physics of Solids , 01187 Dresden, Germany
- Claudia Felser
- Max Planck Institute for Chemical Physics of Solids , 01187 Dresden, Germany; Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg & Technische Universität Dresden , Dresden, Germany
- Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids , 01187 Dresden, Germany
- Anton Tadich
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University , Clayton, Victoria 3800, Australia; Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Victoria, Australia
- Mengting Zhao
- School of Physics and Astronomy, Monash University , Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University , Clayton, Victoria 3800, Australia; Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Victoria, Australia
- Mark T Edmonds
- School of Physics and Astronomy, Monash University , Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University , Clayton, Victoria 3800, Australia
- Junxiang Jia
- School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore
- Maciej Bieniek
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg , 97074 Würzburg, Germany; Institute of Theoretical Physics, Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Jukka I Väyrynen
- ORCiD
- Department of Physics and Astronomy, Purdue University , West Lafayette, IN 47907, United States of America
- Dimitrie Culcer
- ORCiD
- School of Physics, University of New South Wales , Sydney 2052, Australia; ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of New South Wales , Sydney 2052, Australia
- Bhaskaran Muralidharan
- Department of Electrical Engineering, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
- Muhammad Nadeem
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong , Wollongong, New South Wales 2525, Australia; ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong , Wollongong, New South Wales 2525, Australia
- DOI
- https://doi.org/10.1088/2515-7639/ad2083
- Journal volume & issue
-
Vol. 7,
no. 2
p. 022501
Abstract
2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin–momentum locked metallic edge states—both helical and chiral—surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps—up to a few hundred meV—promise to enable topology for applications even at room-temperature. Further, the possibility of combining 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives.
Keywords
- 2D topological insulators
- condensed matter
- topological electronics
- semiconductor heterostructures
- tungsten ditelluride
- quantum spin Hall materials