Wind Energy Science (Mar 2021)

An overview of wind-energy-production prediction bias, losses, and uncertainties

  • J. C. Y. Lee,
  • M. J. Fields

DOI
https://doi.org/10.5194/wes-6-311-2021
Journal volume & issue
Vol. 6
pp. 311 – 365

Abstract

Read online

The financing of a wind farm directly relates to the preconstruction energy yield assessments which estimate the annual energy production for the farm. The accuracy and the precision of the preconstruction energy estimates can dictate the profitability of the wind project. Historically, the wind industry tended to overpredict the annual energy production of wind farms. Experts have been dedicated to eliminating such prediction errors in the past decade, and recently the reported average energy prediction bias is declining. Herein, we present a literature review of the energy yield assessment errors across the global wind energy industry. We identify a long-term trend of reduction in the overprediction bias, whereas the uncertainty associated with the prediction error is prominent. We also summarize the recent advancements of the wind resource assessment process that justify the bias reduction, including improvements in modeling and measurement techniques. Additionally, because the energy losses and uncertainties substantially influence the prediction error, we document and examine the estimated and observed loss and uncertainty values from the literature, according to the proposed framework in the International Electrotechnical Commission 61400-15 wind resource assessment standard. From our findings, we highlight opportunities for the industry to move forward, such as the validation and reduction of prediction uncertainty and the prevention of energy losses caused by wake effect and environmental events. Overall, this study provides a summary of how the wind energy industry has been quantifying and reducing prediction errors, energy losses, and production uncertainties. Finally, for this work to be as reproducible as possible, we include all of the data used in the analysis in appendices to the article.