Energies (Jan 2021)

Investigation of the Carrier Movement through the Tunneling Junction in the InGaP/GaAs Dual Junction Solar Cell Using the Electrically and Optically Biased Photoreflectance Spectroscopy

  • Sanam SaeidNahaei,
  • Hyun-Jun Jo,
  • Sang Jo Lee,
  • Jong Su Kim,
  • Sang Jun Lee,
  • Yeongho Kim

DOI
https://doi.org/10.3390/en14030638
Journal volume & issue
Vol. 14, no. 3
p. 638

Abstract

Read online

For examining the carrier movements through tunnel junction, electrically and optically-biased photoreflectance spectroscopy (EBPR and OBPR) were used to investigate the internal electric field in the InGaP/GaAs dual junction solar cell at room temperature. At InGaP and GaAs, the strength of p-n junction electric fields (Fpn) was perturbed by the external DC bias voltage and CW light intensity for EBPR and OBPR experiments, respectively. Moreover, the Fpn was evaluated using the Fast Fourier Transform (FFT) of the Franz—Keldysh oscillation from PR spectra. In the EBPR, the electric field decreased by increasing the DC bias voltage, which also decreased the potential barrier. In OBPR, when incident CW light is absorbed by the top cell, the decrement of the Fpn in the GaAs cell indicates that the photogenerated carriers are accumulated near the p-n junction. Photogenerated carriers in InGaP can pass through the tunnel junction, and the PR results show the contribution of the modification of the electric field by the photogenerated carriers in each cell. We suggest that PR spectroscopy with optical-bias and electrical-bias could be analyzed using the information of the photogenerated carrier passed through the tunnel junction.

Keywords