Polydatin Protects Bovine Mammary Epithelial Cells against Zearalenone-Induced Apoptosis by Inhibiting Oxidative Responses and Endoplasmic Reticulum Stress
Yurong Fu,
Yongcheng Jin,
Anshan Shan,
Jing Zhang,
Hongyu Tang,
Jinglin Shen,
Changhai Zhou,
Hao Yu,
Hengtong Fang,
Yun Zhao,
Junxiong Wang,
Yue Tian
Affiliations
Yurong Fu
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Yongcheng Jin
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Anshan Shan
Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
Jing Zhang
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Hongyu Tang
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Jinglin Shen
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Changhai Zhou
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Hao Yu
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Hengtong Fang
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Yun Zhao
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Junxiong Wang
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Yue Tian
Key Laboratory of Zoonosis Research, Department of Animal Science, College of Animal Sciences, Jilin University, Ministry of Education, Changchun 130062, China
Zearalenone (ZEA) is a mycotoxin of the Fusarium genus that can cause endoplasmic reticulum (ER) stress and Apoptosis in bovine mammary epithelial cells (MAC-T). Polydatin (PD), a glycoside purified from Polygonum cuspidatum, has antioxidant properties. This study aimed to explore whether PD can alleviate ZEA-induced damage on bovine mammary epithelial cells (MAC-T). We found that incasing the concentration of ZEA (0, 7.5, 15, 30, 60, 90, 120, and 240 μM) gradually decreased the cell viability. PD treatment alone at 5, 10, and 20 μM did not affect cell viability. Follow-up studies then applied 30 μM of ZEA and 5 μM of PD to treat cells; the results showed that the ZEA + PD treatment group effectively reduced cell oxidative damage compared with the ZEA treatment group. The qPCR analysis showed that ZEA treatment significantly up-regulated the expression of ER stress-related genes, relative to the control. However, adding PD significantly down-regulated the expression of ER stress-related genes. The cell apoptosis detection results showed that, compared with the ZEA treatment group, the ZEA + PD treatment group down-regulated the Bax gene and up-regulated the Bcl-2 gene expressions, which reduced the cell apoptosis rate and Caspase-3 activity. Taken together, these results indicate that PD reduces ZEA-induced apoptosis by inhibiting oxidative damage and ER stress.