Regulation of respiratory complex I assembly by FMN cofactor targeting
Andrea Curtabbi,
Adela Guarás,
José Luis Cabrera-Alarcón,
Maribel Rivero,
Enrique Calvo,
Marina Rosa-Moreno,
Jesús Vázquez,
Milagros Medina,
José Antonio Enríquez
Affiliations
Andrea Curtabbi
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
Adela Guarás
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
José Luis Cabrera-Alarcón
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
Maribel Rivero
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
Enrique Calvo
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
Marina Rosa-Moreno
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
Jesús Vázquez
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
Milagros Medina
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
José Antonio Enríquez
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Corresponding author. Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
Respiratory complex I plays a crucial role in the mitochondrial electron transport chain and shows promise as a therapeutic target for various human diseases. While most studies focus on inhibiting complex I at the Q-site, little is known about inhibitors targeting other sites within the complex. In this study, we demonstrate that diphenyleneiodonium (DPI), a N-site inhibitor, uniquely affects the stability of complex I by reacting with its flavin cofactor FMN. Treatment with DPI blocks the final stage of complex I assembly, leading to the complete and reversible degradation of complex I in different cellular models. Growing cells in medium lacking the FMN precursor riboflavin or knocking out the mitochondrial flavin carrier gene SLC25A32 results in a similar complex I degradation. Overall, our findings establish a direct connection between mitochondrial flavin homeostasis and complex I stability and assembly, paving the way for novel pharmacological strategies to regulate respiratory complex I.