Applied Sciences (Jun 2024)

FAGD-Net: Feature-Augmented Grasp Detection Network Based on Efficient Multi-Scale Attention and Fusion Mechanisms

  • Xungao Zhong,
  • Xianghui Liu,
  • Tao Gong,
  • Yuan Sun,
  • Huosheng Hu,
  • Qiang Liu

DOI
https://doi.org/10.3390/app14125097
Journal volume & issue
Vol. 14, no. 12
p. 5097

Abstract

Read online

Grasping robots always confront challenges such as uncertainties in object size, orientation, and type, necessitating effective feature augmentation to improve grasping detection performance. However, many prior studies inadequately emphasize grasp-related features, resulting in suboptimal grasping performance. To address this limitation, this paper proposes a new grasping approach termed the Feature-Augmented Grasp Detection Network (FAGD-Net). The proposed network incorporates two modules designed to enhance spatial information features and multi-scale features. Firstly, we introduce the Residual Efficient Multi-Scale Attention (Res-EMA) module, which effectively adjusts the importance of feature channels while preserving precise spatial information within those channels. Additionally, we present a Feature Fusion Pyramidal Module (FFPM) that serves as an intermediary between the encoder and decoder, effectively addressing potential oversights or losses of grasp-related features as the encoder network deepens. As a result, FAGD-Net achieved advanced levels of grasping accuracy, with 98.9% and 96.5% on the Cornell and Jacquard datasets, respectively. The grasp detection model was deployed on a physical robot for real-world grasping experiments, where we conducted a series of trials in diverse scenarios. In these experiments, we randomly selected various unknown household items and adversarial objects. Remarkably, we achieved high success rates, with a 95.0% success rate for single-object household items, 93.3% for multi-object scenarios, and 91.0% for cluttered scenes.

Keywords