EPJ Web of Conferences (Jan 2017)

Towards overcoming the Monte Carlo sign problem with tensor networks

  • Bañuls Mari Carmen,
  • Cichy Krzysztof,
  • Ignacio Cirac J.,
  • Jansen Karl,
  • Kühn Stefan,
  • Saito Hana

DOI
https://doi.org/10.1051/epjconf/201713704001
Journal volume & issue
Vol. 137
p. 04001

Abstract

Read online

The study of lattice gauge theories with Monte Carlo simulations is hindered by the infamous sign problem that appears under certain circumstances, in particular at non-zero chemical potential. So far, there is no universal method to overcome this problem. However, recent years brought a new class of non-perturbative Hamiltonian techniques named tensor networks, where the sign problem is absent. In previous work, we have demonstrated that this approach, in particular matrix product states in 1+1 dimensions, can be used to perform precise calculations in a lattice gauge theory, the massless and massive Schwinger model. We have computed the mass spectrum of this theory, its thermal properties and real-time dynamics. In this work, we review these results and we extend our calculations to the case of two flavours and non-zero chemical potential. We are able to reliably reproduce known analytical results for this model, thus demonstrating that tensor networks can tackle the sign problem of a lattice gauge theory at finite density.