PLoS ONE (Jan 2013)

Multiple MAPK cascades regulate the transcription of IME1, the master transcriptional activator of meiosis in Saccharomyces cerevisiae.

  • Smadar Kahana-Edwin,
  • Michal Stark,
  • Yona Kassir

DOI
https://doi.org/10.1371/journal.pone.0078920
Journal volume & issue
Vol. 8, no. 11
p. e78920

Abstract

Read online

The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into meiosis depends on multiple signals converging upon IME1, the master transcriptional activator of meiosis. Here we studied the regulation of the cis-acting regulatory element Upstream Activation Signal (UAS)ru, which resides within the IME1 promoter. Guided by our previous data acquired using a powerful high-throughput screening system, here we provide evidence that UASru is regulated by multiple stimuli that trigger distinct signal transduction pathways as follows: (i) The glucose signal inhibited UASru activity through the cyclic AMP (cAMP/protein kinase A (PKA) pathway, targeting the transcription factors (TFs), Com2 and Sko1; (ii) high osmolarity activated UASru through the Hog1/mitogen-activated protein kinase (MAPK) pathway and its corresponding TF Sko1; (iii) elevated temperature increased the activity of UASru through the cell wall integrity pathway and the TFs Swi4/Mpk1 and Swi4/Mlp1; (iv) the nitrogen source repressed UASru activity through Sum1; and (v) the absence of a nitrogen source was detected and transmitted to UASru by the Kss1 and Fus3 MAPK pathways through their respective downstream TFs, Ste12/Tec1 and Ste12/Ste12 as well as by their regulators Dig1/2. These signaling events were specific to UASru; they did not affect the mating and filamentation response elements that are regulated by MAPK pathways. The complex regulation of UASru through all the known vegetative MAPK pathways is unique to S. cerevisiae and is specific for IME1, likely because it is the master regulator of gametogenesis.