IUCrJ (May 2021)

Supramolecular structures of NiII and CuII with the sterically demanding Schiff base dyes driven by cooperative action of preagostic and other non-covalent interactions

  • Alexey A. Shiryaev,
  • Tatyana M. Burkhanova,
  • Mariusz P. Mitoraj,
  • Mercedes Kukulka,
  • Filip Sagan,
  • Ghodrat Mahmoudi,
  • Maria G. Babashkina,
  • Michael Bolte,
  • Damir A. Safin

DOI
https://doi.org/10.1107/S2052252521000610
Journal volume & issue
Vol. 8, no. 3
pp. 351 – 361

Abstract

Read online

This work reports on synthesis and extensive experimental and theoretical investigations on photophysical, structural and thermal properties of the NiII and CuII discrete mononuclear homoleptic complexes [Ni(LI,II)2] and [Cu(LI,II)2] fabricated from the Schiff base dyes o-HOC6H4—CH=N—cyclo-C6H11 (HLI) and o-HOC10H6—CH=N—cyclo-C6H11 (HLII), containing the sterically crowding cyclohexyl units. The six-membered metallocycles adopt a clearly defined envelope conformation in [Ni(LII)2], while they are much more planar in the structures of [Ni(LI)2] and [Cu(LI,II)2]. It has been demonstrated by in-depth bonding analyses based on the ETS-NOCV and Interacting Quantum Atoms energy-decomposition schemes that application of the bulky substituents, containing several C—H groups, has led to the formation of a set of classical and unintuitive intra- and inter-molecular interactions. All together they are responsible for the high stability of [Ni(LI,II)2] and [Cu(LI,II)2]. More specifically, London dispersion dominated intramolecular C—H...O, C—H...N and C—H...H—C hydrogen bonds are recognized and, importantly, the attractive, chiefly the Coulomb driven, preagostic (not repulsive anagostic) C—H...Ni/Cu interactions have been discovered despite their relatively long distances (∼2.8–3.1 Å). All the complexes are further stabilized by the extremely efficient intermolecular C—H...π(benzene) and C—H...π(chelate) interactions, where both the charge-delocalization and London dispersion constituents appear to be crucial for the crystal packing of the obtained complexes. All the complexes were found to be photoluminescent in CH2Cl2, with [Cu(LII)2] exhibiting the most pronounced emission – the time-dependent density-functional-theory computations revealed that it is mostly caused by metal-to-ligand charge-transfer transitions.

Keywords