PLOS Digital Health (Mar 2024)

Clinical gait analysis using video-based pose estimation: Multiple perspectives, clinical populations, and measuring change.

  • Jan Stenum,
  • Melody M Hsu,
  • Alexander Y Pantelyat,
  • Ryan T Roemmich

DOI
https://doi.org/10.1371/journal.pdig.0000467
Journal volume & issue
Vol. 3, no. 3
p. e0000467

Abstract

Read online

Gait dysfunction is common in many clinical populations and often has a profound and deleterious impact on independence and quality of life. Gait analysis is a foundational component of rehabilitation because it is critical to identify and understand the specific deficits that should be targeted prior to the initiation of treatment. Unfortunately, current state-of-the-art approaches to gait analysis (e.g., marker-based motion capture systems, instrumented gait mats) are largely inaccessible due to prohibitive costs of time, money, and effort required to perform the assessments. Here, we demonstrate the ability to perform quantitative gait analyses in multiple clinical populations using only simple videos recorded using low-cost devices (tablets). We report four primary advances: 1) a novel, versatile workflow that leverages an open-source human pose estimation algorithm (OpenPose) to perform gait analyses using videos recorded from multiple different perspectives (e.g., frontal, sagittal), 2) validation of this workflow in three different populations of participants (adults without gait impairment, persons post-stroke, and persons with Parkinson's disease) via comparison to ground-truth three-dimensional motion capture, 3) demonstration of the ability to capture clinically relevant, condition-specific gait parameters, and 4) tracking of within-participant changes in gait, as is required to measure progress in rehabilitation and recovery. Importantly, our workflow has been made freely available and does not require prior gait analysis expertise. The ability to perform quantitative gait analyses in nearly any setting using only low-cost devices and computer vision offers significant potential for dramatic improvement in the accessibility of clinical gait analysis across different patient populations.