Diagnostics (Feb 2023)
Myocardial Perfusion Single-Photon Emission Computed Tomography (SPECT) Image Denoising: A Comparative Study
Abstract
The present study aimed to evaluate the effectiveness of different filters in improving the quality of myocardial perfusion single-photon emission computed tomography (SPECT) images. Data were collected using the Siemens Symbia T2 dual-head SPECT/Computed tomography (CT) scanner. Our dataset included more than 900 images from 30 patients. The quality of the SPECT was evaluated after applying filters such as the Butterworth, Hamming, Gaussian, Wiener, and median–modified Wiener filters with different kernel sizes, by calculating indicators such as the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and contrast-to-noise ratio (CNR). SNR and CNR were highest with the Wiener filter with a kernel size of 5 × 5. Additionally, the Gaussian filter achieved the highest PSNR. The results revealed that the Wiener filter, with a kernel size of 5 × 5, outperformed the other filters for denoising images of our dataset. The novelty of this study includes comparison of different filters to improve the quality of myocardial perfusion SPECT. As far as we know, this is the first study to compare the mentioned filters on myocardial perfusion SPECT images, using our datasets with specific noise structures and mentioning all the elements necessary for its presentation within one document.
Keywords