BMC Plant Biology (May 2020)

Genome-wide identification of the peptide transporter family in rice and analysis of the PTR expression modulation in two near-isogenic lines with different nitrogen use efficiency

  • Xinghai Yang,
  • Xiuzhong Xia,
  • Yu Zeng,
  • Baoxuan Nong,
  • Zongqiong Zhang,
  • Yanyan Wu,
  • Qinglan Tian,
  • Weiying Zeng,
  • Ju Gao,
  • Weiyong Zhou,
  • Haifu Liang,
  • Danting Li,
  • Guofu Deng

DOI
https://doi.org/10.1186/s12870-020-02419-y
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Nitrogen (N) is a major nutrient element for crop growth. In plants, the members of the peptide transporter (PTR) gene family may involve in nitrate uptake and transport. Here, we identified PTR gene family in rice and analyzed their expression profile in near-isogenic lines. Results We identified 96, 85 and 78 PTR genes in Nipponbare, R498 and Oryza glaberrima, and the phylogenetic trees were similar in Asian cultivated rice and African cultivated rice. The number of PTR genes was higher in peanut (125) and soybean (127). The 521 PTR genes in rice, maize, sorghum, peanut, soybean and Arabidopsis could be classified into 4 groups, and their distribution was different between monocots and dicots. In Nipponbare genome, the 25 PTR genes were distributed in 5 segmental duplication regions on chromosome 1, 2, 3, 4, 5, 7, 8, 9, and 10. The PTR genes in rice have 0–11 introns and 1–12 exons, and 16 of them have the NPF (NRT1/PTR family) domain. The results of RNA-seq showed that the number of differentially expressed genes (DEGs) between NIL15 and NIL19 at three stages were 928, 1467, and 1586, respectively. Under low N conditions, the number of differentially expressed PTR genes increased significantly. The RNA-seq data was analyzed using WGCNA to predict the potential interaction between genes. We classified the genes with similar expression pattern into one module, and obtained 25 target modules. Among these modules, three modules may be involved in rice N uptake and utilization, especially the brown module, in which hub genes were annotated as protein kinase that may regulate rice N metabolism. Conclusions In this study, we comprehensively analyzed the PTR gene family in rice. 96 PTR genes were identified in Nippobare genome and 25 of them were located on five large segmental duplication regions. The Ka/Ks ratio indicated that many PTR genes had undergone positive selection. The RNA-seq results showed that many PTR genes were involved in rice nitrogen use efficiency (NUE), and protein kinases might play an important role in this process. These results provide a fundamental basis to improve the rice NUE via molecular breeding.

Keywords