Drug Design, Development and Therapy (Apr 2014)

Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents

  • Zhang Y,
  • Zhao C,
  • He W,
  • Wang Z,
  • Fang Q,
  • Xiao B,
  • Liu Z,
  • Liang G,
  • Yang S

Journal volume & issue
Vol. 2014, no. default
pp. 373 – 382

Abstract

Read online

Yali Zhang,1,2,* Chengguang Zhao,1,2,* Wenfei He,2,* Zhe Wang,2 Qilu Fang,2 Bing Xiao,2 Zhiguo Liu,2 Guang Liang,2 Shulin Yang1 1School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China; 2Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China *These authors contributed equally to this work Abstract: Sepsis is a systemic inflammatory response syndrome and is mainly caused by lipopolysaccharides (LPS) – a component of the cell walls of gram-negative bacteria, via toll-like receptor 4–mitogen-activated protein kinases/nuclear factor-kappa B-dependent proinflammatory signaling pathway. Here, we synthesized 26 asymmetric monocarbonyl analogs of curcumin and evaluated their anti-inflammatory activity by inhibiting the LPS-induced secretion of tumor necrosis factor-α and interleukin-6 in mouse RAW264.7 macrophages. Five active compounds (3a, 3c, 3d, 3j, and 3l) exhibited dose-dependent inhibition against the release of tumor necrosis factor-α and interleukin-6, and they also showed much higher chemical stability than curcumin in vitro. The anti-inflammatory activity of analogs 3a and 3c may be associated with their inhibition of the phosphorylation of extracellular signal-regulated kinase and the activation of nuclear factor-kappa B. In addition, 3c exhibited significant protection against LPS-induced septic death in vivo. These results indicate that asymmetrical monocarbonyl curcumin analogs may be utilized as candidates for the treatment of acute inflammatory diseases. Keywords: sepsis, inflammatory cytokines, anti-inflammation, quantitative structure–activity relationship