Future Internet (Sep 2021)

A Fusion-Based Hybrid-Feature Approach for Recognition of Unconstrained Offline Handwritten Hindi Characters

  • Danveer Rajpal,
  • Akhil Ranjan Garg,
  • Om Prakash Mahela,
  • Hassan Haes Alhelou,
  • Pierluigi Siano

DOI
https://doi.org/10.3390/fi13090239
Journal volume & issue
Vol. 13, no. 9
p. 239

Abstract

Read online

Hindi is the official language of India and used by a large population for several public services like postal, bank, judiciary, and public surveys. Efficient management of these services needs language-based automation. The proposed model addresses the problem of handwritten Hindi character recognition using a machine learning approach. The pre-trained DCNN models namely; InceptionV3-Net, VGG19-Net, and ResNet50 were used for the extraction of salient features from the characters’ images. A novel approach of fusion is adopted in the proposed work; the DCNN-based features are fused with the handcrafted features received from Bi-orthogonal discrete wavelet transform. The feature size was reduced by the Principal Component Analysis method. The hybrid features were examined with popular classifiers namely; Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). The recognition cost was reduced by 84.37%. The model achieved significant scores of precision, recall, and F1-measure—98.78%, 98.67%, and 98.69%—with overall recognition accuracy of 98.73%.

Keywords