Indane Based Molecular Motors: UV-Switching Increases Number of Isomers
Valeriy P. Shendrikov,
Anna S. Alekseeva,
Erik F. Kot,
Konstantin S. Mineev,
Daria S. Tretiakova,
Abdulilah Ece,
Ivan A. Boldyrev
Affiliations
Valeriy P. Shendrikov
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
Anna S. Alekseeva
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
Erik F. Kot
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
Konstantin S. Mineev
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
Daria S. Tretiakova
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
Abdulilah Ece
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
Ivan A. Boldyrev
Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
We describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of trans-configuration and four different rotamers of cis-configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these. Although the trans to cis conversion leads to the increase of the system entropy some of the cis-rotamers can directly convert to each other while others should convert via trans-configuration. The motion of aphin-switches resembles the work of a mixing machine with indane group serving as a base and phenol group serving as a beater. The aphin-switches presented herein may provide a basis for promising applications in advanced biological systems or particularly in cases where on demand disordering of molecular packing has value, such as lipid bilayers.