Sensors (Apr 2024)

Characterization of Anisotropic Salt Weathering through Nondestructive Techniques Mapping Using a GIS Environment

  • Miguel Gomez-Heras,
  • Laura López-González,
  • María Teresa Gil-Muñoz,
  • Cristina Cabello-Briones,
  • David Benavente,
  • Javier Martínez-Martínez

DOI
https://doi.org/10.3390/s24092686
Journal volume & issue
Vol. 24, no. 9
p. 2686

Abstract

Read online

Doctrinal texts on architectural heritage conservation emphasize the importance of fully understanding the structural and material characteristics and utilizing information systems. Photogrammetry allows for the generation of detailed, geo-referenced Digital Elevation Models of architectural elements at a low cost, while GIS software enables the addition of layers of material characteristic data to these models, creating different property maps that can be combined through map algebra. This paper presents the results of the mechanical characterization of materials and salt-related decay forms of the polygonal apse of the 13th-century monastery of Santa María de Bonaval (Guadalajara, Spain), which is primarily affected by salt crystallization. Rock strength is estimated using on-site nondestructive testing (ultrasound pulse velocity and Leeb hardness). They are mapped and combined through map algebra to derive a single mechanical soundness index (MSI) to determine whether the decay of the walls could be dependent on the orientation. The presented results show that salt decay in the building is anisotropic, with the south-facing side of the apse displaying an overall lower MSI than the others. The relative overheating of the south-facing side of the apse enhances the effect of salt crystallization, thereby promoting phase transitions between epsomite and hexahydrite.

Keywords