Journal of Bioresources and Bioproducts (Nov 2020)
Production of jet fuel intermediates from biomass platform compounds via aldol condensation reaction over iron-modified MCM-41 lewis acid zeolite
Abstract
Liquid fuel intermediates could be produced via aldol condensation reaction between furfural or 5-hydroxymethylfurfural (HMF) and acetone. It was found that iron-modified MCM-41 zeolite can be an effective Lewis acid catalyst for C—C bond formation via aldol condensation of furfural or HMF with acetone. The 4-(2-furyl)-3-buten-2-one and 1, 5-di-2-furanyl-1, 4-pentadien-3-one (FAc and F2Ac), or 1, 5-di-2-furanyl-1, 4-pentadien-3-one and 1, 5-bis[(5- hydroxlmethyl)-2-furanyl]-1, 4-pentadien-3-one (HAc and H2Ac), as two main condensation products of furfural with acetone or HMF with acetone, were observed. After 24 h at 160 °C, 86.9% conversion of furfural with 60.0% yield of the FAc as well as 7.5% yield of the F2Ac and 88.9% conversion of the HMF with 41.1% yield of the HAc as well as 3.5% yield of the H2Ac were achieved. Although furfural or HMF conversion was almost same after 24 h at 160 °C, iron-modified MCM-41 zeolite catalyst displayed an enhanced selectivity to condensation products of furfural with acetone. In addition, catalysts showed an improved selectivity to the F2Ac and H2Ac at higher reaction temperature. The reusability and regeneration studies showed that iron-modified MCM-41 zeolite catalyst could not be reused directly, but could be regenerated by calcination in air, and the catalytic performance of regenerated catalyst was acceptable.