Nature Communications (Mar 2023)

Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer

  • Kelsy C. Cotto,
  • Yang-Yang Feng,
  • Avinash Ramu,
  • Megan Richters,
  • Sharon L. Freshour,
  • Zachary L. Skidmore,
  • Huiming Xia,
  • Joshua F. McMichael,
  • Jason Kunisaki,
  • Katie M. Campbell,
  • Timothy Hung-Po Chen,
  • Emily B. Rozycki,
  • Douglas Adkins,
  • Siddhartha Devarakonda,
  • Sumithra Sankararaman,
  • Yiing Lin,
  • William C. Chapman,
  • Christopher A. Maher,
  • Vivek Arora,
  • Gavin P. Dunn,
  • Ravindra Uppaluri,
  • Ramaswamy Govindan,
  • Obi L. Griffith,
  • Malachi Griffith

DOI
https://doi.org/10.1038/s41467-023-37266-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 18

Abstract

Read online

Analysing the regulatory consequences of mutations and splice variants at large scale in cancer requires efficient computational tools. Here, the authors develop RegTools, a software package that can identify splice-associated variants from large-scale genomics and transcriptomics data with efficiency and flexibility.