Biochemistry and Biophysics Reports (Jul 2018)

Maternal exposure to prostaglandin E2 modifies expression of Wnt genes in mouse brain – An autism connection

  • Ravneet Rai-Bhogal,
  • Christine Wong,
  • Ashby Kissoondoyal,
  • Jennilee Davidson,
  • Hongyan Li,
  • Dorota A. Crawford

DOI
https://doi.org/10.1016/j.bbrep.2018.03.012
Journal volume & issue
Vol. 14, no. C
pp. 43 – 53

Abstract

Read online

Prostaglandin E2 (PGE2) is a lipid signaling molecule important for brain development and function. Various genetic and environmental factors can influence the level of PGE2 and increase the risk of developing Autism Spectrum Disorder (ASD). We have previously shown that in neuronal cell lines and mouse brain, PGE2 can interfere with the Wnt canonical pathway, which is essential during early brain development. Higher levels of PGE2 increased Wnt-dependent motility and proliferation of neuroectodermal stem cells, and modified the expression of Wnt genes previously linked to autism disorders. We also recently established a cross-talk between these two pathways in the prenatal mouse brain lacking PGE2 producing enzyme (COX-/-). The current study complements the published data and reveals that PGE2 signaling also converges with the Wnt canonical pathway in the developing mouse brain after maternal exposure to PGE2 at the onset of neurogenesis. We found significant changes in the expression level of Wnt-target genes, Mmp7, Wnt2, and Wnt3a, during prenatal and early postnatal stages. Interestingly, we observed variability in the expression level of these genes between genetically-identical pups within the same pregnancy. Furthermore, we found that all the affected genes have been previously associated with disorders of the central nervous system, including autism. We determined that prenatal exposure to PGE2 affects the Wnt pathway at the level of β-catenin, the major downstream regulator of Wnt-dependent gene transcription. We discuss how these results add new knowledge into the molecular mechanisms by which PGE2 may interfere with neuronal development during critical periods.

Keywords