Clinical Epigenetics (Oct 2023)

KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations

  • Kaiqing Wang,
  • Zhicheng Gong,
  • Yanyan Chen,
  • Meimei Zhang,
  • Suzeng Wang,
  • Surui Yao,
  • Zhihui Liu,
  • Zhaohui Huang,
  • Bojian Fei

DOI
https://doi.org/10.1186/s13148-023-01579-6
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Gastric cancer patients harboring a TP53 mutation exhibit a more aggressive and chemoresistant phenotype. Unfortunately, efforts to identify the vulnerabilities to overcome these aggressive malignancies have made minimal progress in recent years. Therefore, there is an urgent need to explore the novel therapeutic strategies for this subclass. Histone methylation modulators are critical epigenetic targets for cancer therapies that help maintain the malignancies of cancers harboring TP53 mutations and senescence evasion. Triggering senescence is now considered to benefit multiple cancer therapies. Furthermore, senescence-based “one-two punch” therapy was validated in clinical trials. Therefore, we hypothesized that screening epigenetic modulators might help identify a novel vulnerability to trigger senescence in gastric cancer harboring TP53 mutations. Results We developed a novel efficient approach to identify senescence inducers by sequentially treating cells with drug candidates and senolytic agents. Based on this, we demonstrated that QC6352 (a selective KDM4C inhibitor) efficiently triggered cellular senescence in gastric cancer harboring TP53 mutations. More importantly, the “one-two punch’ therapy consisting of QC6352 and SSK1 eliminates tumor cells harboring TP53 mutations. This finding highlights a potential therapeutic strategy for the aggressive subgroup of gastric cancer. Besides, the functions of QC6352 were totally unknown. We demonstrated that QC6352 might possess far more powerful anti-tumor capacities compared to the traditional genotoxic drugs, 5-Fu and Oxaliplatin. Conclusions This initial investigation to identify a senescence inducer revealed that QC6352 triggers senescence in gastric cancer cells harboring TP53 mutations by regulating the SP1/CDK2 axis through suppressing KDM4C. QC6352 and senolytic agent-SSK1 represent a novel ‘one-two punch’ therapeutic strategy for the more malignant gastric cancer subtypes.

Keywords