Life (Nov 2023)
A Study of Adult Olfactory Proteins of Primitive Ghost Moth, <i>Endoclita signifer</i> (Lepidoptera, Hepialidae)
Abstract
Endoclita signifer is a prominent wood-boring insect species in eucalyptus plantations in Guangxi, China, causing significant ecological and economic damage. A novel approach to controlling the challenging wood-boring pest involves disrupting the olfactory communication between insects and the volatile compounds emitted by plants. To identify the olfactory proteins contributing to host selection based on 11 GC-EAD-active volatiles from eucalyptus leaves and to discover the highly expressed olfactory proteins, we conducted a study on the antennal transcriptomes of adult E. signifer and screened key olfactory proteins in the antennae. We identified a total of 69 olfactory proteins. When compared to the larval transcriptomes, the antennal transcriptome of adult E. signifer revealed the presence of 17 new odorant-binding proteins (OBPs), including 2 pheromone-binding proteins (PBPs), 7 previously unreported chemosensory proteins (CSPs), 17 new odorant receptors (ORs), 4 new gustatory receptors (GRs), 11 novel ionotropic receptors (IRs), and 2 sensory neuron membrane proteins (SNMPs). Through the phylogenetic tree of OBPs and ORs, we identified EsigPBP2 and EsigPBP3 as two of the three PBPs, designated EsigOR13 as EsigOrco, and recognized EsigOR10 and EsigOR22 as the newly discovered EsigPRs in E. signifer. In the adult antennae, the expression levels of EsigGOBP14, EsigGOBP13, EsigOBP14, EsigOBP17, EsigCSP14, and EsigOR16 were notably high, indicating that these proteins could be pivotal in binding to plant volatiles.
Keywords