Journal of Clinical Medicine (May 2024)

A Machine Learning-Based Mortality Prediction Model for Patients with Chronic Hepatitis C Infection: An Exploratory Study

  • Abdullah M. Al Alawi,
  • Halima H. Al Shuaili,
  • Khalid Al-Naamani,
  • Zakariya Al Naamani,
  • Said A. Al-Busafi

DOI
https://doi.org/10.3390/jcm13102939
Journal volume & issue
Vol. 13, no. 10
p. 2939

Abstract

Read online

Background: Chronic hepatitis C (HCV) infection presents global health challenges with significant morbidity and mortality implications. Successfully treating patients with cirrhosis may lead to mortality rates comparable to the general population. This study aims to utilize machine learning techniques to create predictive mortality models for individuals with chronic HCV infections. Methods: Data from chronic HCV patients at Sultan Qaboos University Hospital (2009–2017) underwent analysis. Data pre-processing handled missing values and scaled features using Python via Anaconda. Model training involved SelectKBest feature selection and algorithms such as logistic regression, random forest, gradient boosting, and SVM. The evaluation included diverse metrics, with 5-fold cross-validation, ensuring consistent performance assessment. Results: A cohort of 702 patients meeting the eligibility criteria, predominantly male, with a median age of 47, was analyzed across a follow-up period of 97.4 months. Survival probabilities at 12, 36, and 120 months were 90.0%, 84.0%, and 73.0%, respectively. Ten key features selected for mortality prediction included hemoglobin levels, alanine aminotransferase, comorbidities, HCV genotype, coinfections, follow-up duration, and treatment response. Machine learning models, including the logistic regression, random forest, gradient boosting, and support vector machine models, showed high discriminatory power, with logistic regression consistently achieving an AUC value of 0.929. Factors associated with increased mortality risk included cardiovascular diseases, coinfections, and failure to achieve a SVR, while lower ALT levels and specific HCV genotypes were linked to better survival outcomes. Conclusions: This study presents the use of machine learning models to predict mortality in chronic HCV patients, providing crucial insights for risk assessment and tailored treatments. Further validation and refinement of these models are essential to enhance their clinical utility, optimize patient care, and improve outcomes for individuals with chronic HCV infections.

Keywords