운동과학 (May 2023)
Effects of Resistance Exercise Training on Aged Skeletal Muscle: Potential Role of Muscle Stem Cells
Abstract
PURPOSE The prevalence of sarcopenia, which can lead to disability, hospitalization, and death, is increasing among older populations. Resistance exercise training (RT) is currently the most effective strategy for combating sarcopenia by stimulating hypertrophy and increasing strength. This review describes the underlying mechanisms of aging skeletal muscle and whether RT attenuates aging-related loss of muscle function and mass. METHODS We reviewed and summarized previous research using PubMed, Science Direct, and Google Scholar databases. RESULTS Load-induced muscle growth is a complex phenomenon that depends on various physiological systems and signaling pathways. Muscle growth occurs through signaling events arising from mechanical stress and consequent muscle protein turnover controlled by the balance between protein synthesis and degradation, which is negatively affected by aging. The authors used the myonuclear domains mediated by muscle satellite cells to explain the molecular machinery of exercise-induced muscle growth and recovery in aging muscles. CONCLUSIONS Despite a blunted molecular response to an exercise bout, aging muscle cells demonstrated remarkable plasticity, with substantial improvements in myofibril size and strength during RT. More studies are necessary to elucidate the specific mechanisms by which RT activates muscle satellite cells and mitogenic and myogenic signaling in aged muscles.
Keywords