Applied Sciences (Mar 2023)

Exhumation of the Higher Himalaya: Insights from Detrital Zircon U–Pb Ages of the Oligocene–Miocene Chitarwatta Formation, Sulaiman Fold–Thrust Belt, Pakistan

  • Muhammad Qasim,
  • Owais Tayyab,
  • Lin Ding,
  • Javed Iqbal Tanoli,
  • Zahid Imran Bhatti,
  • Muhammad Umar,
  • Hawas Khan,
  • Junaid Ashraf,
  • Ishtiaq Ahmad Khan Jadoon

DOI
https://doi.org/10.3390/app13063418
Journal volume & issue
Vol. 13, no. 6
p. 3418

Abstract

Read online

This study reports the detrital zircon U–Pb ages of the post collisional Chitarwatta Formation, exposed along the western margin of the Indian plate at the Sulaiman fold–thrust belt (SFB), Pakistan. The Chitarwatta Formation overlies the shallow marine carbonate sequence of the Kirthar Formation and represents an Oligocene–Miocene transitional marine sequence. The sequence consists of sandstone, siltstone, and mudstone. The sandstone consists predominantly (79–82%) of quartz grains. The framework grains are sub-angular to sub-rounded and show recycled orogenic provenance. The detrital zircon U–Pb age data show the dominant population between 390 Ma and ~1100 Ma, which is ~70% of the total population. In addition to this, a significant percentage of the younger detrital ages exist between ~40 Ma and ~120 Ma. This younger age cluster indicates the northern sources, including the Kohistan–Ladakh arc (KLA) and Karakoram block (KB), whereas the provenance for the 390–1100 Ma detrital zircon is likely the Higher Himalaya (HH), with contribution from Tethyan Himalaya (TH). This post-collisional scenario suggests that the Chitarwatta Formation received detritus from the northern sources through a drainage system, named as the Indus drainage system. A comparison with the coeval units in the north (Murree Formation, Dagshai Formation, and Dumre Formation) suggests that the sediments may have been delivered through the same drainage system that shares similar detritus. Relying on the contribution of the HH detritus, we propose that the HH uplifted during the Oligocene–Miocene along the Main Central Thrust (MCT) and provided detritus to the foreland basin.

Keywords