Molecules (Sep 2022)

Uranium-Doped Zinc, Copper, and Nickel Oxides for Enhanced Catalytic Conversion of Furfural to Furfuryl Alcohol: A Relativistic DFT Study

  • Shuang Li,
  • Yu-Chang Hou,
  • Yuan-Ru Guo,
  • Qing-Jiang Pan

DOI
https://doi.org/10.3390/molecules27186094
Journal volume & issue
Vol. 27, no. 18
p. 6094

Abstract

Read online

Transition metal oxides (TMOs) and actinide ones (AnOs) have been widely applied in catalytic reactions due to their excellent physicochemical properties. However, the reaction pathway and mechanism, especially involving TM–An heterometallic centers, remain underexplored. In this respect, relativistic density functional theory (DFT) was used to examine uranium-doped zinc, copper, and nickel oxides for their catalytic activity toward the conversion of furfural to furfuryl alcohol. A comparison was made with their undoped TMOs. It was found that the three TMOs were capable of catalyzing the reaction, where the free energies of adsorption, hydrogenation, and desorption fell between −33.93 and 45.00 kJ/mol. The uranium doping extremely strengthened the adsorption of CuO-U and NiO-U toward furfural, making hydrogenation or desorption much harder. Intriguingly, ZnO-U showed the best catalytic performance among all six catalyst candidates, as its three reaction energies were very small (−10.54–8.12 kJ/mol). The reaction process and mechanism were further addressed in terms of the geometrical, bonding, charge, and electronic properties.

Keywords