Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room-temperature Néel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of Néel skyrmions that are enabled by the electrical current-induced spin-orbit torques. Towards the nanoscale Néel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.