Mathematical Modeling of Oxygen Transfer Using a Bubble Generator at a High Reynolds Number: A Partial Differential Equation Approach for Air-to-Water Transfer
Mihaela Constantin,
Cătălina Dobre,
Mugurel Oprea
Affiliations
Mihaela Constantin
Department of Thermotechnics, Engines, Thermal and Refrigeration Equipment, Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology “POLITEHNICA” of Bucharest, 060042 Bucharest, Romania
Cătălina Dobre
Department of Thermotechnics, Engines, Thermal and Refrigeration Equipment, Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology “POLITEHNICA” of Bucharest, 060042 Bucharest, Romania
Mugurel Oprea
Department of Thermotechnics, Engines, Thermal and Refrigeration Equipment, Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology “POLITEHNICA” of Bucharest, 060042 Bucharest, Romania
This paper presents the mathematical modeling of the oxygen transfer process using partial differential equations (PDEs). This process is crucial in various environmental and engineering applications, such as wastewater treatment, aeration systems, and natural water bodies, in order to maintain water quality. The authors solved the typical PDE for describing the change in oxygen concentration over time and present the developed model of the differential equation with the term “source”, indicating that the model could be used to optimize oxygen transfer in various environmental and engineering applications, contributing to improved water quality and system efficiency.