Gels (Sep 2018)

Impacts of Size and Deformability of β-Lactoglobulin Microgels on the Colloidal Stability and Volatile Flavor Release of Microgel-Stabilized Emulsions

  • Ryan W. Murphy,
  • Lijie Zhu,
  • Ganesan Narsimhan,
  • Owen Griffith Jones

DOI
https://doi.org/10.3390/gels4030079
Journal volume & issue
Vol. 4, no. 3
p. 79

Abstract

Read online

Emulsions can be prepared from protein microgel particles as an alternative to traditional emulsifiers. Prior experiments have indicated that smaller and more deformable microgels would decrease both the physical destabilization of emulsions and the diffusion-based losses of entrapped volatile molecules. The microgels were prepared from β-lactoglobulin with an average diameter of 150 nm, 231 nm, or 266 nm; large microgels were cross-linked to decrease their deformability. Dilute emulsions of 15–50 μm diameter were prepared with microgels by high shear mixing. Light scattering and microscopy showed that the emulsions prepared with larger, untreated microgels possessed a larger initial droplet size, but were resistant to droplet growth during storage or after acidification, increased ionic strength, and exposure to surfactants. The emulsions prepared with cross-linked microgels emulsions were the least resistant to flocculation, creaming, and shrinkage. All emulsion droplets shrank as limonene was lost during storage, and the inability of microgels to desorb caused droplets to become non-spherical. The microgels were not displaced by Tween 20 but were displaced by excess sodium dodecyl sulfate. Hexanol diffusion and associated shrinkage of pendant droplets was not prevented by any of the microgels, yet the rate of shrinkage was reduced with the largest microgels.

Keywords