Electric vehicles (EVs) have received widespread attention in the automotive industry as the most promising solution for lowering CO2 emissions and mitigating worldwide environmental concerns. However, the effectiveness of EVs can be affected due to battery health degradation and performance deterioration with lifespan. Therefore, an advanced and smart battery management technology is essential for accurate state estimation, charge balancing, thermal management, and fault diagnosis in enhancing safety and reliability as well as optimizing an EV’s performance effectively. This paper presents an analytical and technical evaluation of the smart battery management system (BMS) in EVs. The analytical study is based on 110 highly influential articles using the Scopus database from the year 2010 to 2020. The analytical analysis evaluates vital indicators, including current research trends, keyword assessment, publishers, research categorization, country analysis, authorship, and collaboration. The technical assessment examines the key components and functions of BMS technology as well as state-of-the-art methods, algorithms, optimization, and control surgeries used in EVs. Furthermore, various key issues and challenges along with several essential guidelines and suggestions are delivered for future improvement. The analytical analysis can guide future researchers in enhancing the technologies of battery energy storage and management for EV applications toward achieving sustainable development goals.