IEEE Open Journal of Nanotechnology (Jan 2021)

Plasmon-Enhanced Photovoltaic Characteristics of Black Phosphorus-MoS<sub>2</sub> Heterojunction

  • Hou Chaojian,
  • Li Bo,
  • Li Qingwei,
  • Yang Lijun,
  • Wang Yang,
  • Yang Zhan,
  • Dong Lixin

DOI
https://doi.org/10.1109/OJNANO.2021.3062495
Journal volume & issue
Vol. 2
pp. 41 – 51

Abstract

Read online

Van der Waals p-n heterojunctions, consist of atomically thin two-dimensional (2D) layer semiconductors, have opened a promising avenue for the realization of ultrathin and ultralight photovoltaic solar cells. This feature enables them particularly be suitable as the micro/nanoscale solar energy-conversion units integrated in wireless power supply micro/nano-systems. However, solar energy harvest in these heterojunctions is hindered by inherent weak interlayer interaction at such ultrathin thickness. Herein, a novel integrated strategy by embedding metallic plasmonic pentamers optical nano-antenna array (ONAA) onto overlap region of black phosphorus-molybdenum disulfide (BP-MoS2) p-n heterojunction is firstly exploited under both a near-infrared laser (λ = 830 nm) and standardized AM1.5G solar irradiation. Results show that profiting from plasmon-induced “hot” electrons and thermal field generating from gigantic near-field enhancement in 15 nm-ultrashort nanogap ONAAs and high intrinsic build-in field in atomically overlap region, this integrated configuration displays enhanced photovoltaic properties. Maximum short-circuits current (Isc = 0.53 μA) and open circuit voltage (Voc = 0.2 V) had been attained. Additional fill factor of 14% and double power conversion efficiencies amplification are measured via comparison of device without/with ONAAs. These findings strongly demonstrate this reliable enhancement strategy with integration of plasmonic physics into 2D heterojunctions for realizing energy harvesting unit in the wireless power supply micro/nano-systems.

Keywords