Electronic Journal of Biotechnology (Sep 2020)
Expression of Pinellia ternata leaf agglutinin under rolC promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae
Abstract
Background: Piercing/sucking insect pests in the order Hemiptera causes substantial crop losses by removing photoassimilates and transmitting viruses to their host plants. Cloning and heterologous expression of plant-derived insect resistance genes is a promising approach to control aphids and other sap-sucking insect pests. While expression from the constitutive 35S promoter provides broad protection, the phloem-specific rolC promoter provides better defense against sap sucking insects. The selection of plant-derived insect resistance genes for expression in crop species will minimize bio-safety concerns. Results: Pinellia ternata leaf agglutinin gene (pta), encodes an insecticidal lectin, was isolated and cloned under the 35S and rolC promoters in the pGA482 plant transformation vector for Agrobacterium-mediated tobacco transformation. Integration and expression of the transgene was validated by Southern blotting and qRT-PCR, respectively. Insect bioassays data of transgenic tobacco plants showed that expression of pta under rolC promoter caused 100% aphid mortality and reduced aphid fecundity up to 70% in transgenic tobacco line LRP-9. These results highlight the better effectivity of pta under rolC promoter to control phloem feeders, aphids. Conclusions: These findings suggested the potential of PTA against aphids and other sap sucking insect pests. Evaluation of gene in tobacco under two different promoters; 35S constitutive promoter and rolC phloem-specific promoter could be successfully use for other crop plants particularly in cotton. Development of transgenic cotton plants using plant-derived insecticidal, PTA, would be key step towards commercialization of environmentally safe insect-resistant crops. How to cite: Umer N, Naqvi RZ, Rauf I, et al. Expression of Pinellia ternata leaf agglutinin under rolC promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.004.