Fractal Continuum Mapping Applied to Timoshenko Beams
Didier Samayoa,
Alexandro Alcántara,
Helvio Mollinedo,
Francisco Javier Barrera-Lao,
Christopher René Torres-SanMiguel
Affiliations
Didier Samayoa
ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Alexandro Alcántara
ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Helvio Mollinedo
Engineering Department, Instituto Politécnico Nacional, UPIITA, Av. IPN, No. 2580, Col. La Laguna Ticoman, Gustavo A. Madero, Mexico City 07340, Mexico
Francisco Javier Barrera-Lao
Facultad de Ingeniería, Universidad Autónoma de Campeche, Campus V, Av. Humberto Lanz, Col. ExHacienda Kalá, San Francisco de Campeche 24085, Mexico
Christopher René Torres-SanMiguel
ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
In this work, a generalization of the Timoshenko beam theory is introduced, which is based on fractal continuum calculus. The mapping of the bending problem onto a non-differentiable self-similar beam into a corresponding problem for a fractal continuum is derived using local fractional differential operators. Consequently, the functions defined in the fractal continua beam are differentiable in the ordinary calculus sense. Therefore, the non-conventional local derivatives defined in the fractal continua beam can be expressed in terms of the ordinary derivatives, which are solved theoretically and numerically. Lastly, examples of classical beams with different boundary conditions are shown in order to check some details of the physical phenomenon under study.