Journal of Rock Mechanics and Geotechnical Engineering (Jun 2022)
Consolidation of partially saturated ground improved by impervious column inclusion: Governing equations and semi-analytical solutions
Abstract
This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion. The constitutive relations for soil skeleton, pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion. Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived. The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method. A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion. Based on the parametric study, it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure (PAP), a shorter dissipation time of excess pore water pressure (PWP), and a lower normalized settlement.