Journal of Inequalities and Applications (Jan 2020)

A double inequality for tanhx

  • Bo Zhang,
  • Chao-Ping Chen

DOI
https://doi.org/10.1186/s13660-020-2289-y
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 8

Abstract

Read online

Abstract In this paper, we prove that, for x>0 $x>0$, 1−exp(−x2x2+1)<tanhx<1−exp(−x3x3+1)3. $$ \sqrt{1-\exp \biggl(-\frac{x^{2}}{\sqrt{x^{2}+1}} \biggr)}< \tanh x< \sqrt[3]{1-\exp \biggl(- \frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)}. $$This solves an open problem proposed by Ivády.

Keywords