Alzheimer’s Research & Therapy (Jun 2017)

One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond

  • Loïc Dayon,
  • Seu Ping Guiraud,
  • John Corthésy,
  • Laeticia Da Silva,
  • Eugenia Migliavacca,
  • Domilė Tautvydaitė,
  • Aikaterini Oikonomidi,
  • Barbara Moullet,
  • Hugues Henry,
  • Sylviane Métairon,
  • Julien Marquis,
  • Patrick Descombes,
  • Sebastiano Collino,
  • François-Pierre J. Martin,
  • Ivan Montoliu,
  • Martin Kussmann,
  • Jérôme Wojcik,
  • Gene L. Bowman,
  • Julius Popp

DOI
https://doi.org/10.1186/s13195-017-0270-x
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Methods Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1–42 peptide chain [Aβ1–42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. Results The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ1–42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. Conclusions We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers.

Keywords