Lipids in Health and Disease (Mar 2018)
Plasma angiopoietin-like 4 is related to phospholipid transfer protein activity in diabetic and non-diabetic subjects: role of enhanced low grade inflammation
Abstract
Abstract Background Angiopoietin-like 4 (ANGPTL4) inhibits lipoprotein lipase, whereas phospholipid transfer protein (PLTP) enhances hepatic triglyceride secretion. Both factors may be upregulated by inflammatory pathways. Since the extent to which these circulating factors are interrelated is unknown, we determined the relationship between plasma ANGPTL4 and PLTP activity, and assessed whether such a relationship could be explained by high sensitivity C-reactive protein (hsCRP) levels as a marker of low-grade chronic inflammation. Methods Fasting plasma ANGPTL4, PLTP activity (liposome-vesicle high density lipoprotein system) and hsCRP were measured in 41 type 2 diabetic (T2DM) subjects and 36 non-diabetic subjects. Results Plasma ANGPTL4 and PLTP activity were increased in T2DM (p < 0.001 for each), coinciding with elevated hsCRP, triglycerides and non-esterified fatty acids (NEFA) (p = 0.031 to 0.001). In univariate analysis, ANGTLP4 was correlated with PLTP activity (Rs = 0.309, p = 0.006), whereas both factors were related to hsCRP and NEFA levels (Rs = 0.304 to 0.411, p < 0.01 to < 0.001). In multivariable linear regression analysis adjusting for age, sex, glucose, total cholesterol, triglycerides and NEFA, ANGPTL4 and PLTP activity each remained positively associated with hsCRP (β = 0.315, p = 0.003 and β = 0.299, p = 0.034, respectively). Plasma ANGPTL4 remained positively associated with PLTP activity when taking account of age, sex, glucose, total cholesterol, triglycerides and NEFA (β = 0.315, p = 0.003). Notably, this association disappeared after further adjustment for hsCRP (β = 0.131, p = 0.25). Conclusions In conclusion, plasma ANGPTL4 and PLTP activity are interrelated, which may at least in part be explained by low-grade chronic inflammation. A pro-inflammatory state could affect triglyceride metabolism via concerted effects on ANGPTL4 and PLTP.
Keywords